
PARABOLIC GEOMETRIES
FOR PEOPLE THAT LIKE PICTURES

LECTURE 1: HOW DO WE MOVE
INSIDE A LIE GROUP?

JACOB W. ERICKSON

As we will see later, Cartan geometries are a sophisticated way of
making a principal bundle over a manifold resemble a particular Lie
group. Therefore, if we want to talk about geometric intuition for
these things, then we really need to start with Lie groups. In this
lecture, we will answer some basic questions regarding visualization of
Lie groups, including:

• What do left-translation and right-translation look like?
• What does conjugation look like?
• What is the Maurer-Cartan form?
• Why is the Maurer-Cartan form so easy to use for geometry?

By the end of this lecture, the reader should start to have an intuitive
grasp of what it is like to move around inside of a Lie group, and in
the next lecture, we will practice using this to do geometry.

1. Picturing the group of Euclidean isometries

To start, we give a way of placing ourselves inside of Euclidean ge-
ometry: orthonormal frames.

Figure 1. We can depict an orthonormal frame ϕ on
R2 by the pair of tangent vectors (ϕ(e1), ϕ(e2))
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Consider the plane R2 with the usual Euclidean structure. An or-
thonormal frame over u ∈ R2 is just a linear isometry ϕ from R2 ≈ T0R2

to the tangent space TuR2. Fixing a pair e1 and e2 of orthonormal vec-
tors in R2 ≈ T0R2, we can uniquely determine an orthonormal frame ϕ
by its values on e1 and e2, since linear maps are uniquely determined
by their values on a basis. In particular, we can pictorially depict an
orthonormal frame ϕ as the pair of tangent vectors (ϕ(e1), ϕ(e2)) on
the plane.

While using pairs of vectors is useful for drawing pictures, there is
a different way of visualizing orthonormal frames that will be useful in
far more general settings. Imagine we are walking around on R2. Look
directly in front of us; along this tangent direction, there is a unique
unit vector that corresponds to moving “forward” with unit speed.
Similarly, to our left, perpendicular to the forward direction, there is a
unique unit vector corresponding to leftward motion with unit speed.
Thus, we can identify our configuration on the plane with the unique
orthonormal frame ϕ such that ϕ(e1) is the unit forward vector and
ϕ(e2) is the unit leftward vector.1 In other words, orthonormal frames
allow us to place ourselves inside of Euclidean geometry.

Figure 2. Each orthonormal frame corresponds to a
unique configuration for ourselves as pedestrians on the
Euclidean plane

Now, let us consider the Lie group I(2) of Euclidean isometries of R2

under composition.
To each u ∈ R2, there is a unique isometry τu ∈ I(2) given by

v 7→ u + v, called translation2 by u. In particular, each isometry

1Of course, the choice to use forward and left is arbitrary, and we could just as
easily have chosen something else as long as we remained consistent.

2These correspond to both left-translations and right-translations on R2, viewed
as a Lie group.
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ϕ ∈ I(2) uniquely decomposes as a composition

ϕ = τϕ(0) ◦
(
τ−1
ϕ(0) ◦ ϕ

)
,

where τϕ(0) is a translation and τ−1
ϕ(0) ◦ϕ = τ−ϕ(0) ◦ϕ is an isometry that

fixes 0. Since isometries preserve lines in the plane, an isometry that
fixes 0 must be linear, hence the subgroup of isometries that fix 0 is
precisely the orthogonal group O(2) of linear isometries of R2. In other
words, every ϕ ∈ I(2) can be written uniquely as a composition τu ◦ A
for some u ∈ R2 and A ∈ O(2).
Given two isometries τu ◦ A and τv ◦ B, we can compute their com-

position: for x ∈ R2,

(τu ◦ A) ◦ (τv ◦B)(x) = (τu ◦ A)(v +B(x)) = u+ A(v +B(x))

= (u+ A(v)) + AB(x) = (τu+A(v) ◦ AB)(x),

so (τu ◦ A) ◦ (τv ◦ B) = τu+A(v) ◦ AB. In particular, we may consider
the Lie group I(2) as the semidirect product R2 ⋊ O(2), with group
operation given by

(u,A)(v,B) =
(
u+ A(v), AB

)
.

Elements of the orthogonal group O(2) are, by definition, linear
isometries from R2 ≈ T0R2 to itself, so O(2) can be viewed as the
space of orthonormal frames over 0. By adding in translations, this
perspective then allows us to identify I(2) with the space of all or-
thonormal frames over R2, which we would usually call the orthonor-
mal frame bundle over R2. Specifically, for each isometry ϕ ∈ I(2), the
pushforward ϕ∗ : R2 ≈ T0R2 → Tϕ(0)R2 gives a linear isometry from
the tangent space at 0 to the tangent space at ϕ(0), hence ϕ∗ is an
orthonormal frame at ϕ(0).
In review, we identify each ϕ ∈ I(2) with the orthonormal frame

ϕ∗ determined by its pushforward at 0. Every ϕ ∈ I(2) uniquely
decomposes as a composition of the form τu ◦ A for some u ∈ R2

and A ∈ O(2). Pictorially, we can depict the orthonormal frame
τu∗ ◦A : R2 ≈ T0R2 → TuR2 corresponding to τu ◦A as the pair of tan-
gent vectors (τu∗(A(e1)), τu∗(A(e2))) at ϕ(0) = u. More importantly,
however, we can identify τu ◦ A with the configuration of ourselves on
the plane such that τu∗(A(e1)) is the unit forward vector and τu∗(A(e2))
is the unit leftward vector.

2. Transformation and Motion

Throughout, we will use La to denote left-translation g 7→ ag and
Ra to denote right-translation g 7→ ga. What do left-translation and
right-translation look like? In particular, how are they different? Since
we have some intuition for what elements of I(2) look like, it gives a
good place to investigate these questions.
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To start, let us look at how left-translation by τe1 behaves. For an
arbitrary element τu ◦ A ∈ I(2), we have

Lτe1
(τu ◦ A) = τe1 ◦ (τu ◦ A) = (τe1 ◦ τu) ◦ A = τe1+u ◦ A.

In other words, it behaves basically the same as it does as a transfor-
mation of R2, shifting every orthonormal frame uniformly by e1.

Figure 3. Left-translating by τe1 shifts all orthonormal
frames uniformly by e1, as if we were applying it as a
transformation to the plane and the orthonormal frames
were thought of as being inside of the plane

Figure 4. Left-translating by the rotation given by

rot(θ) :=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ O(2) uniformly rotates all or-

thonormal frames by θ around 0

To see where this behavior comes from, note that I(2) acts transi-
tively on R2, so since O(2) is the stabilizer of 0 in I(2), we can think
of R2 as the homogeneous space I(2)/O(2). In particular, we have a
natural quotient map

q
O(2)

: I(2) → R2 ∼= I(2)/O(2)

given by ϕ 7→ ϕ(0), or equivalently, by τu ◦ A 7→ u.
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This map q
O(2)

lets us think of the space I(2) of orthonormal frames of

R2 as a bundle over R2. In terms of orthonormal frames, q
O(2)

just takes

orthonormal frames over u ∈ R2 and maps them all to u. Equivalently,
thinking as a pedestrian on the Euclidean plane, q

O(2)
takes our precise

configuration on the Euclidean plane and maps it to the point of R2 at
which we are positioned.

For ϕ, ψ ∈ I(2), we have

q
O(2)

(Lϕ(ψ)) = q
O(2)

(ϕ ◦ ψ) = ϕ ◦ ψ(0) = ϕ(q
O(2)

(ψ)),

so under the quotient map q
O(2)

, left-translation by ϕ in I(2) corresponds
to just applying ϕ as a transformation.

What does this mean for right-translation? For ϕ, ψ ∈ I(2), we have

q
O(2)

(Rϕ(ψ)) = q
O(2)

(ψ ◦ ϕ) = ψ(ϕ(0)).

The key here is to notice that, because I(2) acts on R2 ∼= I(2)/O(2)
from the left, ϕ gets to act before ψ does when we apply the transfor-
mation ψ ◦ ϕ = Rϕ(ψ). This means that right-translation by ϕ moves
each orthonormal frame as if ϕ is acting on the orthonormal frame at
the identity.

In an attempt to clarify what this means, let us see what right-
translation by τe1 does. For an arbitrary τu ◦ A ∈ I(2), we have

Rτe1
(τu ◦ A) = (τu ◦ A) ◦ τe1 = τu+A(e1) ◦ A.

Using translations to identify each tangent space of R2 with the tangent
space at the identity, this means that right-translation by τe1 shifts each
orthonormal frame by the vector to which that orthonormal frame maps
e1.

Figure 5. Right-translating by τe1 shifts each orthonor-
mal frame by the vector to which that orthonormal frame
maps e1

Under the identification between orthonormal frames and configu-
rations for ourselves as pedestrians on the Euclidean plane, this gives
right-translation by τe1 a very simple description: it corresponds to
walking forward by one unit.
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Figure 6. Right-translating by τe1 corresponds to walk-
ing forward one unit

More generally, we can think of right-translation by an arbitrary
ϕ ∈ I(2) as applying ϕ from the perspective of our configuration. For

example, right-translation by the rotation rot(θ) :=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
just

turns us on the spot by θ, rather than necessarily rotating us around
0.

Figure 7. Right-translating by rot(θ) turns each or-
thonormal frame on the spot by θ

Let us try to summarize this intuition in a few words. Under left-
translation, elements act as transformations, effecting everything uni-
formly according to the action on the homogeneous space I(2)/O(2).
Under right-translation, elements act as motions, moving orthonormal
frames according to their own perspectives. More evocatively, left-
translating by a rotation is like rotating the whole Earth (with us on
it) and right-translating by a rotation is like turning around.



PICTURES FOR PARABOLIC GEOMETRIES 7

3. Conjugation

Now that we have some idea of what left-translation and right-
translation look like, we are naturally led to ask: what does conjugation
look like? There are several ways to approach this question, and as we
will throughout these notes, we encourage the reader to wander off the
path we are following and explore when they feel motivated to do so.
However, the author has found one interpretation in particular that is
consistently useful and easy to see.

For g, h ∈ I(2), observe that

Rh(g) = gh = (ghg−1)g = Lghg−1(g).

On the left-hand side, we have g right-translated by h, which we can
interpret as moving by h from the perspective of g. On the right-hand
side, we have g left-translated by ghg−1, which we can interpret as just
applying the transformation ghg−1 to g. In other words, ghg−1 is the
element we can apply to g as a transformation to reproduce the motion
given by h.

Let us give some examples. For u ∈ R2, consider the translation τu
and the rotation rot(θ) of angle θ around 0. If we right-translate τu
by rot(θ), then this corresponds to turning on the spot by θ around u.
Thus, the conjugate τurot(θ)τ

−1
u is the transformation that does this

to τu, namely rotation of the whole plane by θ around u.

Figure 8. τurot(θ)τ
−1
u rotates the plane by θ around u

Similarly, if we right-translate rot(θ) by τu, then this corresponds to
moving by the vector u according to the perspective of the orthonormal
frame at rot(θ). Therefore, the conjugate rot(θ)τurot(θ) is the trans-
formation that does this to rot(θ), namely translation by rot(θ) · u.
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Figure 9. rot(θ)τurot(θ)
−1 shifts the plane by the vec-

tor to which the orthonormal frame corresponding to
rot(θ) sends u

Using the terminology of transformation and motion, a pithy way
of summarizing this interpretation is that conjugation by g converts
motions to transformations that look like those motions at g.

4. The Maurer-Cartan form: your new best friend

Before talking about the Maurer-Cartan form, let us first examine
the structure of the Lie algebra i(2) of I(2). Using the decomposition
of I(2) as the semidirect product R2 ⋊O(2), we can decompose i(2) as
the semidirect sum R2 B o(2).
This decomposition has a fairly nice interpretation: it tells us that

every element of i(2) can be written as the sum of a (translational)
velocity and an angular velocity. The velocities in R2 < i(2) deter-
mine the obvious one-parameter subgroups: for each v ∈ R2 ≈ T0R2,
exp(tv) = τtv. Similarly, the angular velocities t[ 0 −1

1 0 ] ∈ o(2) < i(2)
map to rot(t) under the exponential map.

By definition, the Lie algebra i(2) of I(2) is the tangent space of I(2)
at the identity element (together with a bracket operation that we’ll
talk about later). To describe tangent spaces at other points, we use
something called the Maurer-Cartan form. While its definition appears
to be just algebraic formalism, do not be fooled: the Maurer-Cartan
form is one of the most deeply intuitive objects in modern differential
geometry.

Definition 4.1. The Maurer-Cartan form of a Lie group G is the
g-valued one-form ω

G
given by

(ω
G
)g : TgG→ g = TeG, Xg 7→ Lg−1∗Xg

at each g ∈ G.
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Let us try to elucidate what the Maurer-Cartan form is trying to tell
us. For g ∈ I(2), consider the tangent vector Lg∗(e1) ∈ Tg I(2); this is
tangent to the curve t 7→ g exp(te1) at t = 0, so since right-translating
by exp(te1) = τte1 simply corresponds to walking forward with unit
speed for time t, the tangent vector Lg∗(e1) gives “unit forward veloc-
ity” at g. By definition, the Maurer-Cartan form maps Lg∗(e1) to

ω
I(2)

(Lg∗(e1)) = Lg−1∗(Lg∗(e1)) = e1,

which is the “unit forward velocity” at the identity element. The
Maurer-Cartan form, in other words, takes the “unit forward velocity”
at each g ∈ I(2) and identifies it with the “unit forward velocity” in
the Lie algebra, so that we have a constant notion of “unit forward ve-
locity” that does not depend on which tangent space we are currently
at. Of course, we obtain similar results for “unit leftward velocity”,
“unit positive angular velocity”, and more generally, any element of
the Lie algebra. Thus, the Maurer-Cartan form ω

I(2)
is a canoni-

cal coframing of a Lie group in terms of motion, identifying each
tangent space of I(2) with the Lie algebra i(2) in a way that is con-
sistent with how elements of the Lie algebra determine one-parameter
subgroups of motions.

Figure 10. While walking across a street, a pedestrian
is “walking forward (without turning)”

You, the reader, are likely far more familiar with this idea than
you realize. For example, think about the last time you crossed a
street; the path you took was probably a geodesic segment, right? We
could try to convince ourselves that we did this with a Riemannian
metric, first by using it to construct a covariant derivative, an operator
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that takes in tangent vectors and outputs a differential operator on the
infinite-dimensional space of vector fields, and then using this covariant
derivative to construct a path in which all of the acceleration is tangent
to the path, but this seems unlikely with a bit of introspection. Really,
when you think about it, you are just telling yourself “walk forward
(without turning) until you get to the other side”, and this is precisely
what a Maurer-Cartan form allows us to do: at each point in time
along the path, you are specifying that your (translational) velocity is
“forward” and your angular velocity is 0.

Of course, the problem with this is that our ambient geometry is not
inherently homogeneous, so we do not necessarily get a Maurer-Cartan
form. On the other hand, whatever it is that we are using to think
about the geometry of the world around us, it does look like a Maurer-
Cartan form, and as it turns out, this is precisely the kind of thing we
will be studying in this course.


